1. User Manual .. p. 2
2. Legal Regulations ... p. 2
3. Safety Instructions ... p. 3
4. Controller Functions .. p. 4
5. Functional Principle ... p. 7
6. Technical Data ... p. 8
7. Performance Graph .. p. 8
8. Mounting .. p. 9
9. Mounting Principle ... p. 9
10. Cutout Dimensions ... p. 10
11. Dimensions (H x W x D) ... p. 10
12. Wiring Diagram ... p. 11
13. Electrical Connection .. p. 12
15. Maintenance & Cleaning .. p. 13
16. Transportation & Storage ... p. 13
17. Repair .. p. 14
18. Parts Supplied ... p. 14
19. Warranty / Limits of Liability .. p. 15
1. User Manual

This instruction manual contains information and instructions to enable the user to work safely, correctly and economically on the unit. Understanding and adhering to the manual can help one:

• Avoid any dangers
• Reduce repair costs and stoppages
• Extend and improve the reliability and working life of the unit

PLEASE ENSURE TO USE THE RIGHT VERSION OF THE INSTRUCTION MANUAL SUITABLE FOR YOUR UNIT

Conditions of Use

The unit is to be used exclusively for the dissipation of heat from control cabinets and enclosures in order to protect temperature sensitive components in an industrial environment. To meet the conditions of use, all the information and instructions in the instruction manual must be adhered to.

- General Danger
 Indicates compulsory safety regulations which are not covered by a specific pictogram such as one of the following.

- High Electric Voltage
 Indicates electric shock danger.

- Important Safety Instruction
 Indicates instructions for safe maintenance and operation of the unit.

- Attention
 Indicates possible burns from hot components.

- Attention
 Indicates possible damage to the unit.

- Instruction
 Indicates possible danger to the environment.

2. Legal Regulations

Liability

The information, data and instructions contained in this instruction manual are current at the time of going to press. We reserve the right to make technical changes to the unit in the course of its development. Therefore, no claims can be accepted for previously delivered units based on the information, diagrams or descriptions contained in this manual. No liability can be accepted for damage and production caused by:

• Disregarding the instruction manual
• Operation error
• Inappropriate work on or with the unit
• The use of non-specified spare parts and accessories
• Unauthorized modifications or changes to the unit by the user or his personnel

Saginaw Control & Engineering is only liable for errors and omissions as outlined in the guarantee conditions contained in the main contractual agreement. Claims for damages on any grounds are excluded.
3. Safety Instructions

Upon delivery the unit is already meeting current technical standards therefore it can be safely taken into operation. Only trained specialists are allowed to work on the unit. Unauthorized personnel must be prohibited from working on the unit. Operating personnel must inform their superiors immediately if any malfunction of the unit becomes apparent.

Please note that before starting to work on or with the unit, a procedure must be carried out inside the cabinet on which the unit is to be mounted.

Before commencing work inside the cabinet, the control cabinet manufacturer’s instruction must be read with regards to:

- Safety instructions
- Instructions on taking the cabinet out of operation
- Instructions on the prevention of unauthorized cabinet reconnection

The electric equipment meets the valid safety regulations. One can find dangerous voltage (above 50V AC or above 100V DC):

- Behind the control cabinet doors
- On the power supply in the unit housing

The units have to be fused according to the type plate and the wiring diagram. Switch the unit off immediately if the electric power supply is interrupted.

Danger Through Incorrect Work on the Unit

Only specialized personnel are allowed to maintain and clean the unit. Regular maintenance and cleaning must be kept in order to ensure that the unit remains in perfect working condition and has a long working life.

Danger from Electric Voltage

Only specialized personnel are allowed to maintain and clean the unit. The personnel must ensure that for the duration of the maintenance and cleaning, the unit is disconnected from the electrical supply.

Attention

Damage to the unit through the use of inappropriate cleaning materials. Please do not use aggressive cleaning material.

Instruction

Damage to the environment through unauthorized disposal. All spare parts and associated material must be disposed of according to the environmental laws.
4. Controller Functions

The cooling unit is intended to be used as a complementary accessory to larger industrial equipment. The unit is used where heat needs to be dissipated from electrical control cabinets or similar enclosures in order to protect heat sensitive components. It is not intended for household use. The unit has two completely separate air circuits which ensure that the clean cabinet air does not come into contact with the ambient air which may well be dirty or polluted. Enclosure cooling units can dissipate large quantities of heat from sealed enclosures such as electrical enclosures into the ambient air and at the same time reduce the cabinet internal temperature to below that of the ambient air.

The unit can function without problems in extreme ambient conditions (e.g. dusty and oily air) with a standard operating temperature ranging between -40°C (-40°F) and +55°C (131°F). Units can be ordered with an additional electrical cabinet heater. For the cooling capacities and environmental ratings please refer to the type plate data.

Controller

The display shows the temperature in the range of -50°C to +150°C (-58°F to +302°F). The temperature is displayed with resolution of tenths between -19.9°C and +99.9°C (-3.8°F to +211.8°F). During programming, it shows the codes and values of the parameters. The display also shows icons according to occurring events.

Display icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compressor relay active</td>
<td>Flashes when activation is delayed or inhibited by protection times, external disabling, or other procedures in progress</td>
</tr>
<tr>
<td>2</td>
<td>Alarm relay active</td>
<td>Flashes when alarms are active</td>
</tr>
<tr>
<td>3</td>
<td>Heater relay active</td>
<td>Signals operation of unit in heating mode</td>
</tr>
<tr>
<td>4</td>
<td>Ambient blower relay active</td>
<td>Signals operation of unit in cooling mode</td>
</tr>
<tr>
<td></td>
<td>Alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heating mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEST</td>
<td>Activated only by manual procedure</td>
</tr>
</tbody>
</table>

Programming

The operating parameters can be modified using the front keypad. Access differs depending on the type of parameter. Access to configuration parameters is protected by a password that prevents unwanted modifications or access by unauthorised persons.
Setting cooling set point, St1:

1. Press “SET” and display should show St1 and then the pre-set value of St1. (default: +35°C / +95°F)
2. Reach the desired value by using ▲ or ▼.
3. Press “SET” again to save the new value of St1.

Setting heating set point, St2 (only for units supplied with internal heater):

1. Press “SET” twice slowly and display should show St2 and then the pre-set value of St2. (default: +5°C / +41°F)
2. Reach the desired value by using ▲ or ▼.
3. Press “SET” again to save the new value of St2.

Setting temperature units (°C / °F), low temperature alarm and high temperature alarm:

1. Press “PRG” button for 5 seconds to reach the modifiable parameter list.
2. Use ▲ or ▼ to reach the desired parameter:
 • C18 for temperature unit of measure
 °C = 0
 °F = 1
 • P25 for low temperature alarm threshold (default -10°C / +14°F)
 • P26 for high temperature alarm threshold (default +55°C / +131°F)
3. Press “SET” on the desired parameter to display the current value.
4. Use ▲ or ▼ to reach the desired value.
5. Pressing “SET” temporarily saves the new value and returns to the parameters list.
6. Repeat steps 2-5 to set other parameters.
7. Press “PRG” for 5 seconds to permanently save the new values.
Test Function
Different test functions can be used depending on the combination of keys pressed. Such tests run for the duration of 4 minutes.

• "SET+▲" tests Compressor and Ambient Blower relays.
• "SET+▼" tests Alarms and Heater relays

Test Function
Both normally closed (NC) and normally open (NO) alarm contacts are provided. These refer to the alarm state. Under normal conditions, the NC contact is closed and the NO contact is open. When an alarm condition is present or the door contact is open, the NC contact will open and the NO contact will close. System power failure will give an alarm condition.

<table>
<thead>
<tr>
<th>State</th>
<th>Alarm Relay</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 System powered OFF</td>
<td>13 14 15</td>
<td></td>
</tr>
<tr>
<td>2 System powered ON -NO ALARM -Door Contact Closed</td>
<td>13 14 15</td>
<td>35.0</td>
</tr>
<tr>
<td>3 System powered ON -Door Contact Open</td>
<td>13 14 15</td>
<td>OFF</td>
</tr>
<tr>
<td>4 System powered ON -ALARM STATE</td>
<td>13 14 15</td>
<td>E04</td>
</tr>
</tbody>
</table>

Notes:
State 2: Additional icons (1,3,4, Reverse, Direct, Test) depending on operation.
State 3: The display shows "OFF" alternating with the standard display.
State 4: The display shows “EXX” alternating with the standard display – at the same time, the alarm icon flashes.

Typical alarm codes:

<table>
<thead>
<tr>
<th>Error Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01 Probe B1 fault</td>
</tr>
<tr>
<td>E02 Probe B2 fault</td>
</tr>
<tr>
<td>E04 High temperature alarm</td>
</tr>
<tr>
<td>E05 Low temperature alarm</td>
</tr>
</tbody>
</table>

Important Notes
• Whilst programming, if no button is pressed for 10 seconds, the display starts flashing, and after 1 minute returns to the main display without saving changes.
• ! To increase scrolling speed, press and hold the ▲ or ▼ button for at least 5 seconds.
• When pressing “PRG” for 3 seconds, the firmware revision code is displayed for 2 seconds.
• When cleaning the controller panel, do not use ethanol, hydrocarbons, ammonia or their byproducts. Use neutral detergents and water.
• In order to protect the unit’s components, minimum relay output on (3 or 7 minutes) and off (4 minutes) times and minimum time (7 or 11 minutes) between activation of the same relay output are applied.
• In case of digital inputs not configured, probes not fitted or configured, or St2 not enabled on the controller the display shows ‘nO’.
5. Functional principle

The air conditioner for enclosures works on the basis of a refrigeration circuit consisting of four main components: compressor (1), evaporator (2), condenser (3) and expansion device (4). The circuit is hermetically sealed and R134a refrigerant circulates inside it (R134a is chlorine free and has an Ozone Destruction Potential [ODP] of 0 and a Global Warning Potential [GWP] of 1430). The compressor compresses the refrigerant (thus taking it to high pressure and high temperature), and pushes it through the condenser, where it is cooled by ambient air thus passing from the gas to the liquid state. At the liquid state it then passes through the capillary pipe being a much lower pressure the refrigerant arrived to the evaporator where it absorbs the necessary heat to change from liquid to gas state. The gas is then drawn back into the compressor completing the cycle.

Condensation management

In environments with humidity and low internal enclosure temperatures, condensation may form on the evaporator coil. By default the air conditioner has a drain socket towards the bottom of the unit for connection of the drain pipe. In addition the air conditioner units have an internal condensate evaporator based on self-regulating PTC heater. Condensate is drained to an internal recipient where it evaporates when in contact with the heater surface. Resulting steam is directed towards the condenser. The PTC heater is permanently connected, and condensate evaporator has an approximate evaporation capacity of 250ml/hr. The recipient has an overflow socket at the bottom of the unit.
6. Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Number</td>
<td>SCE-AC21160B460V3</td>
</tr>
<tr>
<td>Cooling capacity 95F/95F</td>
<td>21,170 BTU</td>
</tr>
<tr>
<td>Cooling capacity 95F/122F</td>
<td>18,440 BTU</td>
</tr>
<tr>
<td>Heating capacity</td>
<td>2,000 W</td>
</tr>
<tr>
<td>Compressor</td>
<td>Scroll</td>
</tr>
<tr>
<td>Refrigerant / GWP</td>
<td>R134a / 1430</td>
</tr>
<tr>
<td>Refrigerant charge</td>
<td>1140 g / 40.2 oz</td>
</tr>
<tr>
<td>High / low pressure</td>
<td>435 / 87 psig</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40°F - 131°F</td>
</tr>
<tr>
<td>Air volume flow (system / unimpeded)</td>
<td>Ambient side: 550 / 870 cfm</td>
</tr>
<tr>
<td></td>
<td>Enclosure side: 635 / 870 cfm</td>
</tr>
<tr>
<td>Mounting</td>
<td>External</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Mild steel, powder coated</td>
</tr>
<tr>
<td>Dimension HxWxD</td>
<td>44.7 x 17.9 x 15.4 inch</td>
</tr>
<tr>
<td>Weight</td>
<td>200 lbs.</td>
</tr>
<tr>
<td>Voltage / Frequency</td>
<td>400/460 V - 50/60 Hz 3~</td>
</tr>
<tr>
<td>Nominal current</td>
<td>5.9 / 6.2 A</td>
</tr>
<tr>
<td>Starting current</td>
<td>69 A</td>
</tr>
<tr>
<td>Max. current</td>
<td>9.0 / 9.8 A</td>
</tr>
<tr>
<td>Nominal power</td>
<td>3.0 kW / 3.8 kW</td>
</tr>
<tr>
<td>Max. power</td>
<td>5.7 kW / 6.3 kW</td>
</tr>
<tr>
<td>Fuse</td>
<td>15 A (T)</td>
</tr>
<tr>
<td>Connection</td>
<td>5 - pole terminal for signals</td>
</tr>
<tr>
<td></td>
<td>4 - pole terminal for power</td>
</tr>
<tr>
<td>SCCR</td>
<td>5kA</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP 56 / TYPE 3, 12, 4</td>
</tr>
<tr>
<td>Approvals</td>
<td>CE, cURus, cULus</td>
</tr>
</tbody>
</table>

7. Performance Graph

- **T** = Ambient temperature
- **P** = Cooling capacity

![Performance Graph](chart.png)
8. Mounting

Always disconnect the power supply before opening the unit.

Heat load to be dissipated from enclosure should not exceed specific cooling output of the unit at any condition. When selecting a cooling unit, always allow for a safety margin of at least 15% extra cooling output in the worst conditions. Air inlets and outlets must be completely free from obstruction.

Ensure that flows of air leaving and entering the cooling unit, internal and external, are not obstructed. Cooling unit enclosure air suction hole must be installed at the highest possible point. When installing the unit on a door ensure it can take the weight.

Before drilling the enclosure, ensure the fixing elements and couplings will not interfere with the equipment inside the enclosure itself. Disconnect power before starting any work inside the enclosure. Following this 1:1 Scale Drilling Template, drill the holes and make the required cuts on the enclosure. This template may have been affected by storage conditions, please check this template by verifying values of the largest dimensions before drilling. Fit the sealing strip to the cooling unit on the side connected to the enclosure and follow the installation diagram.

9. Mounting Principle

1. M6 Bolts
2. M6 Toothed Washers
3. M6 Flat Washers
4. Enclosure
5. Mounting Gasket
6. Cooling Unit
10. Cutout Dimensions

11. Dimensions (H x W x D)
12. Wiring Diagram

Power connector
1. L1
2. L2
3. L3
4. PE

Signal connector
1. Alarm (NC)
2. Alarm (COM)
3. Alarm (NO)
4. Door contact
5. Door contact

Notes:
- L1: Live Phase 1
- L2: Live Phase 2
- L3: Live Phase 3
- PE: Protective Earth
- P1: High Temperature Alarm NC
- P2: High Temperature Alarm COM
- P3: High Temperature Alarm NC
- T1+T2: Door Contact
- HI: Internal Heater (Optional)
- TPI: Thermal Protector f/ HI
- FB: Fuse Board
- SI: Internal Temperature Sensor

EB4200

NOTES:
- Use copper conductors only.
- Use supply wires suitable for 75 °C (167 °F).
- *1: Used only for units with cooling capacity higher than 4 kW (13,600 BTU/hr).
- *2: Connected for units with internal heater (optional).
- *3: Compressor with internal TEC used for units with cooling capacity higher than 6 kW (20,000 BTU/hr).
13. Electrical Connection

The cooling unit is used where heat needs to be dissipated from electrical control cabinets or similar enclosures in order to protect heat sensitive components. The unit has two completely separate air circuits which ensure that the clean cabinet air does not come into contact with the ambient air which may well be dirty or polluted. Control cabinet air conditioners can dissipate large quantities of heat from sealed enclosures, such as control cabinets, into the ambient air and at the same time reduce the cabinet internal temperature to below that of the ambient air.

The control cabinet air conditioner can function without problems in extreme ambient conditions (e.g. dusty and oily air) with a standard operating temperature ranging between -40°F and 131°F. The stated cooling capacities are according to DIN 3168.

Door Switch

The unit can be switched on and off via a door contact switch. When delivered the door contact terminals are bridged on the female connector. To connect the door contact switch, remove the bridge and connect door contact switch. The contact must be closed when the cabinet door is closed.

It is possible to change the logic of the door switch (controller firmware rev. 1.2 or higher). This can be set by changing the value of parameter c68. Refer to the table below and section Controller: Setting temperature units (°C / °F), low temperature alarm, door contact logic section for more information.

- c68 = 0 (default)
 ON if closed - Door contact terminals bridged, or NC door switch connected
 (contact must be closed when cabinet door is closed)

- c68 = 1
 ON if open - Remove bridge, or NO door switch connected
 (contact must be open when cabinet door is closed)

Alarm Contacts

Alarm contacts rated according to:

EN60730-1 8(4)A N.O., 6(4)A N.C., 2(2)A N.O. / N.C. @ 250Vac 100000 cycles
UL 873 8A resistive 2FLA 12LRA, pilot duty C300 @ 250Vac 30000 cycles

These contacts are not suitable for fluorescent loads (neon lights, etc.) that use starters (ballasts) with phase shifting capacitors. Fluorescent lamps with electronic controllers or without phase shifting capacitors can be used, depending on the operating limits specified for each type of relay.

Connect unit

Connect the cooling device according to the instructions below. The cable cross-section must correspond to the required power for the current consumption, but max. 2.5 mm² / AWG 14.
14. Taking Into Operation

Attention!
The unit can be damaged by lack of lubricant. To ensure that the compressor is adequately lubricated, the oil, which has been displaced during transport, must be allowed to flow back into it. The unit must therefore be allowed to stand for at least 30 minutes before being connected to the mains and taken into operation. Upon connection the internal fan will start working. If the temperature inside the enclosure is higher than the set value of the controller, both the compressor and external air fan start working. Once the air inside the enclosure reaches the set temperature, the compressor and external fan will stop.

The unit is pre-set at 95°F, which is suitable for most of the electronic devices.

If Drainage required, use PVC 10mm (3/8 inch) ID Hose.

15. Maintenance & Cleaning

Always switch power supply off before starting any maintenance on the unit.

Any repairs that may be needed must only be done by qualified personnel. The cooling unit is a low maintenance type and for most environments, no filter is required. If an air filter is installed, check it periodically for dirt and clogs. Clean or replace filter when necessary.

Disposal
The cooling unit contains R134a refrigerant and small quantities of lubricating oil. Replacement, repairs and final disposal must be done according to the regulations of each country for these substances.

16. Transportation & Storage

During transport and storage the cooling unit must be kept in the position marked on the box and at a temperature between -40°F and 158°F and a relative humidity of max. 95% (at 77°F). Check that the packaging has not been damaged during transport.
17. Repair

<table>
<thead>
<tr>
<th>Failure</th>
<th>Condition</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Does Not Cool</td>
<td>Internal fan does not work</td>
<td>Power not connected.</td>
<td>Verify power supply</td>
</tr>
<tr>
<td></td>
<td>Internal fan works, external fan and compressor do not work</td>
<td>Enclosure temperature is below setting temperature (St)</td>
<td>Verify values of parameter "St"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door switch contact is open</td>
<td>Verify door switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controller does not work</td>
<td>Replace controller</td>
</tr>
<tr>
<td></td>
<td>Internal fan works, external fan and compressor do not work</td>
<td>Display shows alternating "OFF" and temperature</td>
<td>Change phases inside power supply connector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compressor motor electrical failure</td>
<td>Verify external fan, verify ambient temperature, clean condenser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacitor for compressor failed</td>
<td>Replace capacitor</td>
</tr>
<tr>
<td></td>
<td>Compressor works, external fan does not work</td>
<td>External fan needs to be replaced</td>
<td>Replace external fan</td>
</tr>
<tr>
<td>Enclosure Overheating</td>
<td>Compressor and fans (external and internal) work all the time</td>
<td>Unit cooling undersized</td>
<td>Enclosure needs a bigger cooling unit</td>
</tr>
<tr>
<td></td>
<td>Enclosure needs a bigger cooling unit</td>
<td>Thermal compressor protector triggered</td>
<td>Verify ambient temperature, clean condenser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refrigerant leakage</td>
<td>Contact dealer/service center</td>
</tr>
<tr>
<td>Excessive Condensate</td>
<td>Door enclosure open</td>
<td>Ambient air gets into the enclosure</td>
<td>Ensure door is closed, add a door switch and connect it to controller</td>
</tr>
<tr>
<td></td>
<td>Door enclosure closed</td>
<td>Enclosure IP degree minimum IP54</td>
<td>Seal openings on enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Damaged/misplaced sealing strip</td>
<td>Repair strip accordingly</td>
</tr>
</tbody>
</table>

18. Parts Supplied

- 1 x Air Conditioner
- 1 x Instruction Manual with technical information
- 1 x Mounting Template in 1:1 scale
- 1 x Installation pack containing:
 - 13 x M6 Bolts
 - 13 x A6.4 Toothed Washers
 - 13 x A6.4 Washers
 - 1 x Internal Air Deflector
 - 1 x Female Connector with shorted wired positions for door contact
19. Warranty / Limits of Liability

All goods manufactured by SCE shall be warranted to be free of defects in material or workmanship for a period of two years from the date of shipment. Should the product be proven to SCE to be defective, we shall option to repair or replace the product. At no time will SCE reimburse purchaser for unauthorized rework on any product.

Air Conditioners & Heat Exchangers are warranted on parts and service for a period of two years from the date of shipment by Saginaw Control and subject to the following conditions and exclusions:

All Goods must be installed and operated according to the following specifications: Maximum voltage variation no greater than plus or minus 10% of nominal rating; Maximum frequency variation no greater than plus or minus 3 Hz. from nominal rating; Must not exceed minimum and maximum rated temperatures; Must not exceed (BTU/Hr) rating; Filters must be cleaned regularly; Must be installed and grounded in accordance with all relevant electrical and safety codes, as well as the National Electric Code and OSHA rules and regulations; Must be installed in a stationary application, free of vibration.

Our warranty does not warranty product that has been modified, subjected to abuse, negligence in operation or maintenance, or if product is used in a manner that exceeds its designed capabilities and rating.

Warranty related claims will be returned to the factory for evaluation and final disposition of the claim, any replacement parts will be invoiced at standard pricing and credit issued for the returned product. If the product has been found to have been modified, subjected to abuse, negligence in operation or maintenance, or if product has been used in a manner that exceeds its designed capabilities and rating, credit may be reduced, denied or additional cost may be assessed and passed on to the purchaser, such as return freight.