Step 1: Determine the internal heat load in Watts. (See page 2)

Step 2: Determine temperature difference between the maximum temperature outside the enclosure and the maximum allowable temperature inside the enclosure.

Step 3: Plot your application on the chart.
 a) Find the internal heat load in Watts. (vertical scale)
 b) Draw a horizontal line to the point of intersection with the diagonal line representing temperature difference.
 c) From that point, extend a vertical line down to the horizontal scale to determine your CFM requirement.
 d) Continue the vertical line to the table to identify applicable filter fan package(s).

Step 4: Select the filter fan package and exhaust grille kit which best fits the application.

Help Notes - Electronic Conversions:
1 Watt = 3.413 BTU/hr
Volts x Amps = Watts

thermal management chart.pdf
An enclosure generates 550 Watts of internal heat. Maximum temperature inside the enclosure is 100°F. The maximum temperature outside the enclosure is 85°F.

Step 1: 550 Watts
Step 2: 100°F - 85°F = 15°F
(internal temperature difference)
Step 3: Plot application.
Step 4: Select best combination for filter and fan package(s) and exhaust grille kit(s).

Alternate Method of Selection:
Step 1: Choose a filter fan package.
Step 2: Draw a vertical line from the fan package.
Step 3: Draw a horizontal line from the internal heat load in Watts.
Step 4: The point of intersection is the approximate internal temperature difference using the selected fan package.

SCE-FA/N12FA (Fan Package)
Filter, Fan & Grille
SCE-CF (Cooling Fan)
Fan Motor & Finger Guard
SCE-BP (Blower Package)